All Posts

Grapes & Chickens: Building the Models That Support Everything

Since entering this profession (information management), I have been amused by the expression “comparing apples and oranges,” which is used to communicate a vast chasm of difference between two items. A typical use of this idiom includes “Comparing a train ride to riding a bicycle is ridiculous, an apples-and-oranges comparison.”

Why am I so amused? Because apples and oranges are both fruit, that’s why. They are, absent any other influential context, essentially the same thing. They are grown in orchards, sold next to each other in stores, purchased for the same price, eaten raw, turned into juice, filled with natural sugar and seeds, and so on. I even use them when teaching basic taxonomy.

The idiom is based on the idea that the distinctions between these two items is too strong to enable a reasonable comparison. For example, it would be unfair to measure the tartness or freshness of an apple using an “orange-based standard.” This is true, of course, but it is even harder to compare an apple with a hockey stick, a prime minister, an emotional outburst, or a philosophical approach to understanding the world.

The is-ness of an item must be singularly defined, assigned, and understood when designing an information system to support it. An item’s is-ness defines how it must be modeled (its schema), which controls how it is described, Are webinars the same as documents? Are tweets like emails? Hammers like nails? Customers like each other? Until you are clear on how and why different items are different -- or the same -- you really shouldn’t be designing their containing knowledge systems.

Here’s a joke my kids taught me. What’s the difference between a chicken and a grape? The answer: They’re both purple, except for the chicken.

Modeling is at the core of every data-driven application, from the analysis of big data to the Internet of Things, from sales to research, people and places and things. Designing the right model can open the door to apples-and-orange comparisons, just as it can make them impossible.

For a look into how we use customer data models, product data models, content models, and knowledge architecture to create a framework for unified commerce download our whitepaper: Attribute-Driven Framework for Unified Commerce

Recent Posts

Use Customer and Behavior Data To Create Personalized Experiences

The more quickly customers can find the product they are seeking, the more likely they are to complete a transaction and to return to the site in the future. Personalizing offers and making well- targeted recommendations can bring customers and products together faster, and are effective ways to engage customers by creating a more positive customer experience. In order to do this, companies need to capture and use as much relevant information as possible. The more that is known about the customer, the more effectively the recommendation system works. Customers generate many signals through their online behavior, and those signals can also be used to understand their interests, purchasing patterns, and needs. Reading their digital body language accurately and creating a valid customer model is essential to anticipating and fulfilling those needs.

How to Instrument KPIs Throughout the Customer Journey

You're probably using metrics to determine if your marketing programs are effective. But, have you selected the right metric at each stage of the customer journey?  Which ones connect to your strategic goals? In this session Seth Earley and Allison Brown talk about how each stage of the journey can be instrumented to use feedback from course corrections to further improve the process. You'll learn: Types of operational and user experience metrics and KPI’s How to select and collect the right metric for each stage of the customer journey How KPIs can be used for data-driven decisions How to manage conflicting goals and metrics

First Party Data - Managing and Monetizing the "Data Exhaust" From Your MarTech Stack

Understanding, anticipating and responding to the wants, needs and behaviors of your customer is the competitive battlefield of 2022. However, with new limitations and regulations regarding second and third-party data and tracking cookies, marketers, digital leaders and ecommerce executives have to consider their own methods of collecting and acting upon the data they gather about customers. In this webinar Seth Earley will talk with industry experts about how you need to model, collect, normalize, organize, manage, analyze, and act on customer information. The time to do so is now and we’ll discuss practical ways to move the needle on customer data, customer analytics and orchestration of the customer experience.