All Posts

8 Reasons AI Projects Fail

The Enterprisers Project, a community helping CIOs and IT leaders solve problems, published the Articles "8 Reasons AI Projects Fail" on March 4, 2020 with a quote from Seth Earley:

Establishing master data management and governance and developing a central data repository (a data engagement platform or data lake) is mandatory. “To create transformative AI solutions, we need a holistic, synergistic, and simultaneously integrated flow of information,” says Seth Earley, author of “The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable.” Earley says that a consistent representation of data and data relationships that can inform and power AI is “the master knowledge scaffolding” for AI-driven transformation.

Read the full Article here.

Earley Information Science Team
Earley Information Science Team
We're passionate about enterprise data and love discussing industry knowledge, best practices, and insights. We look forward to hearing from you! Comment below to join the conversation.

Recent Posts

[Earley AI Podcast] Episode 34: Doug Kimball

Taking Control of your Data: How Knowledge Graphs Help to Optimize your Business Guest: Doug Kimball

Accelerating Data and Analytics Capabilities Age of Generative AI: How Governance is a Key Enabler

The underlying principles of Artificial Intelligence have been evolving over decades. Recent advances have created nothing short of a revolutionary breakthrough in information management. Generative AI is in the public consciousness and corporate applications are promising but require certain guardrails and decision-making policies and processes. While “governance“ is a term that brings to mind bureaucratic structures with little practical on-the-ground application, a correctly designed decision-making framework driven by business process/outcome measures and KPIs provides a critical component of data analytics and AI programs.

[Earley AI Podcast] Episode 33: Ben Clinch

Exploring the Power of Collaboration in Data Science Guest: Ben Clinch