All Posts

8 Reasons AI Projects Fail

The Enterprisers Project, a community helping CIOs and IT leaders solve problems, published the Articles "8 Reasons AI Projects Fail" on March 4, 2020 with a quote from Seth Earley:

Establishing master data management and governance and developing a central data repository (a data engagement platform or data lake) is mandatory. “To create transformative AI solutions, we need a holistic, synergistic, and simultaneously integrated flow of information,” says Seth Earley, author of “The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable.” Earley says that a consistent representation of data and data relationships that can inform and power AI is “the master knowledge scaffolding” for AI-driven transformation.

Read the full Article here.

Earley Information Science Team
Earley Information Science Team
We're passionate about enterprise data and love discussing industry knowledge, best practices, and insights. We look forward to hearing from you! Comment below to join the conversation.

Recent Posts

Use Customer and Behavior Data To Create Personalized Experiences

The more quickly customers can find the product they are seeking, the more likely they are to complete a transaction and to return to the site in the future. Personalizing offers and making well- targeted recommendations can bring customers and products together faster, and are effective ways to engage customers by creating a more positive customer experience. In order to do this, companies need to capture and use as much relevant information as possible. The more that is known about the customer, the more effectively the recommendation system works. Customers generate many signals through their online behavior, and those signals can also be used to understand their interests, purchasing patterns, and needs. Reading their digital body language accurately and creating a valid customer model is essential to anticipating and fulfilling those needs.

How to Instrument KPIs Throughout the Customer Journey

You're probably using metrics to determine if your marketing programs are effective. But, have you selected the right metric at each stage of the customer journey?  Which ones connect to your strategic goals? In this session Seth Earley and Allison Brown talk about how each stage of the journey can be instrumented to use feedback from course corrections to further improve the process. You'll learn: Types of operational and user experience metrics and KPI’s How to select and collect the right metric for each stage of the customer journey How KPIs can be used for data-driven decisions How to manage conflicting goals and metrics

First Party Data - Managing and Monetizing the "Data Exhaust" From Your MarTech Stack

Understanding, anticipating and responding to the wants, needs and behaviors of your customer is the competitive battlefield of 2022. However, with new limitations and regulations regarding second and third-party data and tracking cookies, marketers, digital leaders and ecommerce executives have to consider their own methods of collecting and acting upon the data they gather about customers. In this webinar Seth Earley will talk with industry experts about how you need to model, collect, normalize, organize, manage, analyze, and act on customer information. The time to do so is now and we’ll discuss practical ways to move the needle on customer data, customer analytics and orchestration of the customer experience.