All Posts

    [Recorded] Demystifying Knowledge Graphs – Applications in Discovery, Compliance and Governance

    A knowledge graph is a type of data representation that utilizes a network of interconnected nodes to represent real-world entities and the relationships between them. This makes it an ideal tool for data discovery, compliance, and governance tasks, as it allows users to easily navigate and understand complex data sets.

    In this webinar, we will demystify knowledge graphs and explore their various applications in data discovery, compliance, and governance. We will begin by discussing the basics of knowledge graphs and how they differ from other data representation methods. Next, we will delve into specific use cases for knowledge graphs in data discovery, such as for exploring and understanding large and complex datasets or for identifying hidden patterns and relationships in data.

    We will also discuss how knowledge graphs can be used in compliance and governance tasks, such as for tracking changes to data over time or for auditing data to ensure compliance with regulations. Throughout the webinar, we will provide practical examples and case studies to illustrate the benefits of using knowledge graphs in these contexts.

    Finally, we will cover best practices for implementing and maintaining a knowledge graph, including tips for choosing the right technology and data sources, and strategies for ensuring the accuracy and reliability of the data within the graph.

    Overall, this webinar will provide an executive level overview of knowledge graphs and their applications in data discovery, compliance, and governance, and will equip attendees with the tools and knowledge they need to successfully implement and utilize knowledge graphs in their own organizations.

    *Thanks to ChatGPT for help writing this abstract.

    Speakers:

    Seth Earley, Founder & CEO, Earley Information Science

    Juan Sequeda, Principal Scientist, data.world

    REGISTER

    Earley Information Science Team
    Earley Information Science Team
    We're passionate about enterprise data and love discussing industry knowledge, best practices, and insights. We look forward to hearing from you! Comment below to join the conversation.

    Recent Posts

    [RECORDED] Product Data: Insights for Success - How AI is Automating Product Data Programs

    Artificial Intelligence is changing the way businesses interact with their customers. From hyper-personalized experiences to chatbots built on Large Language Models, AI is driving new investment in digital experiences. That same AI and LLM can also be used to automate your product data program. From data onboarding and validation to generating descriptions and validating images, AI can help generate content faster and at a higher quality level to improve product findability, search, and conversion rates. In our second webinar in the Product Data Mastery series, we’re speaking with Madhu Konety from IceCream Labs to show exactly how AI and product data can work together for your business.

    AI’s Value for Product Data Programs

    By Dan O'Connor, Director of Product Data, Earley Information Science

    The Critical Role of Content Architecture in Generative AI

    What is Generative AI? Generative AI has caught fire in the industry – almost every tech vendor has a ChatGPT-like offering (or claims to have one). They are claiming to use the same technology – a large language model (LLM) (actually there are many Large Language Models both open source and proprietary fine-tuned for various industries and purposes) to access and organize content knowledge of the enterprise. As with previous new technologies, LLMs are getting hyped. But what is generative AI?