Growth Series BLOG

Its a Premium BLOG template and it contains Instagram Feed, Twitter Feed, Subscription Form, Blog Search, Image CTA, Topic filter and Recent Post.

All Posts

Heuristics and Empirics, Natural Frenemies

A simple question -- How do you know when you’re right? – led me down a long and treacherous path of self-discovery. The truth is that it is very easy to think that content models are correct, vocabularies complete, and process flows comprehensive and strategically appropriate, but very hard to actually know. (And frankly, this is not good for business!)

I began exploring the patterns of both development and validation – how models are created and then tested – and found a deceptively simple duality: heuristics vs. empirics. Heuristics can be thought of as the mental or creative model, based on what feels like gut instinct but is actually the wealth of tacit knowledge accumulated over time. Heuristic thinking is disguised as “genius” and “intuition,” but it’s also the only way to predict and define a future state that doesn’t yet exist outside the imagination. Empirics, in contrast, are all about the current reality, the often complicated truth. Empiricists are natural guides through the intricacies of hard data, analytically synthesizing the details and behavior of actual data and actual content consumers (users). Wherever the heuristic strategist dreams of an elegant solution, the empirical realist smashes it with measurable fact.

And so heuristic and empirics are both natural partners and natural enemies. You might even say frenemies. And their stadium is one of current state. Heuristic approaches are about advancing current state to something faster, more elegant and more efficient, whereas empirical approaches are about better understanding the current state, discovering patterns of strength and weakness not through brainstorming but simple observation.

Let’s take the example of a controlled vocabulary, such as a list of product categories. If a florist wanted to build a list of words that broadly describe collections of product types, it could approach the problem both heuristically and empirically. Heuristically, a few experienced people can gather in a room and collaborate on how they think about florists products. There are things that grow, like seeds and plants, and things that don’t, like soil and fertilizer and tools. Plants themselves can then be divided into types of plants, such as flowering and nonflowering, edible and inedible, aromatic and nonaromatic, native and nonnative. This top-down brainstorming is indicative of heuristic work.

Alternatively (or simultaneously), a hands-on inspection of all of the florist’s current products, as well as any products they expect to sell in the near future and those sold by competitors, can uncover some interesting perspectives. There are products bought by amateurs or professionals, in bulk or in individual units, during the summer months or all year round, from brand-name vendors or with indifference to source, paired with other products or in isolation. The key to this bottom-up approach is access to data: catalogs (which may already have structure that’s helpful or misleading), purchase records, seasonal data, search queries, behavioral observations. Rarely are empirical data “pretty,” but a smart visualization can bring this knowledge quickly to the light.

Of course, all of this doesn’t yet answer the original question, How do you know when you’re right? For this answer, you’re going to have to wait for my next post. In the meantime, recognize that this question must be answered with a question: Do you mean heuristically or empirically? Because clearly the answer is something like “a little bit of both.”

For more on this topic see, Using CRANIUM for Empirical Testing.

Recent Posts

Designing AI Programs for Success - a 4 Part Series

Recorded - available as on demand webcast AI is plagued by inflated and unrealistic expectations due to a lack of broad understanding of this wide-ranging space by software vendors and customers. Software tools can be extremely powerful, however the services, infrastructure, data quality, architecture, talent and methodologies to fully deploy in the enterprise are frequently lacking. This four-part series by Earley Information Science and Pandata will explore a number of issues that continue to afflict AI projects and reduce the likelihood of success. The sessions will provide actionable steps using proven processes to improve AI program outcomes.

The Missing Ingredient to Digital Transformation: Scaling Knowledge Communities and Processes

The holy grail of digital transformation is the seemingly conflicting goals of high levels of customer service and pressure to reduce costs. “Digital Transformation” has become an all-encompassing term – in a piece in this column about customer data platforms, I asked whether the term has lost its meaning: The phrase “digital transformation” can mean anything and everything — tools, technology, business processes, customer experience, or artificial intelligence, and every buzzword that marketers can come up with. Definitions from analysts and vendors include IT modernization and putting services online; developing new business models; taking a “digital first” approach; and creating new business processes, and customer experiences. The overarching objective of a digital transformation program is to improve end-to-end efficiencies, remove friction from information flows, and create new value streams that differentiate a company’s offerings and strengthen the customer relationship. Having assisted large global enterprises with building the data architecture, supporting processes, and governance for multiple digital transformations, in my experience, there are two broad classes of initiatives that seem to get funding and others that miss the boat in terms of time, attention, and resources.

4 Reasons B2B Manufacturers need Strong Product Data

There are many manufacturers who have started to take the leap forward in the digital space, but there are still a great number who rely solely on their distributors to manage their product data. We are going to look at 4 key reasons why its so important that manufacturers own their product and dedicate the time and resources to build it out.