Growth Series BLOG

Its a Premium BLOG template and it contains Instagram Feed, Twitter Feed, Subscription Form, Blog Search, Image CTA, Topic filter and Recent Post.

All Posts

Master Data Management: Data Quality Supports Achievement of Business Goals

Sometimes a business problem that sounds simple to solve turns out to be a major challenge. For example, getting a count of a company’s customers sounds easy. But within an enterprise, different information systems may have slightly different data for the same customer, producing a new, duplicate record. The same customer can get counted twice, making the total number of customers incorrect. A company also needs to determine their definition of a customer and get agreement across business units and functional areas.  Sales may define it at the account level, while operations defines it at the location or operating unit level. The same holds true for product records--a product may be listed in different ways, so analyses that rely on connecting a metric with a product may be inaccurate.

When a company is working on a business intelligence or an analytics project, data quality is often a roadblock. Analytics that are run on poor quality data will produce results that are not in line with expectations, or do not pass the common sense test. Inconsistencies make aggregating data or analyzing it across different functional areas nearly impossible. Millions of dollars can be spent without the project having achieving the desired outcome, such as gaining insights into businesses operations or tailoring promotions to a particular customer segment.

Another issue that can impede effective analyses is that employees want to solve business problems but they do not understand the data they have. Often, the perceived solution is the deployment of yet another software product. But this can create yet another set of data that may be inconsistent with other systems. Or, data may be updated in one system but not in another, creating inconsistencies across the enterprise. The core issue is not the capabilities of the software so much as it is the issue of data governance and the quality of the data.

The solution is to ensure that there is one set of accurate data or golden record, and the way to do that is through Master Data Management (MDM). An enterprise-wide information architecture that supports the linking of master data to enterprise data is a mechanism for understanding business concepts and then transferring that into data elements. Ideally, the information architecture will capture the business landscape, and the exercise of developing it moves a company shifts the perspective from diverse data sources to a holistic view of enterprise information.

EIS provides unique value in having an end-to-end understanding of business technology. Many companies can establish their business intelligence (BI) systems or implement MDM, but do not have a view of the information flow from its origin to how it gets transferred from data to tangible, actionable information. Systems integrators attempting to assist them may understand the technology, but cannot follow the information flow needed to complete business activities.

Companies generally realize when they have an issue that needs to be solved by an MDM project. They have inconsistent data that is causing a problem, or are unable to determine whether an action on one element in an organization will impact another. For example, when a transaction takes place with one customer, what else is affected? Is a customer also a supplier? or a potential partner? The lack of clear relationships among data element impedes achievement of business goals.

In order to answer questions like this, a robust data model that organizes the data elements and shows the relationships among them must be developed. A wireframe that shows what the user experience will look like, where data is surfaced in different places and what the search facets are, is a useful tool. But ultimately, data quality is fundamental to customer experience, along with having master data and integrating it into critical business applications.

Learn more about master data management in this white paper:  Launching a Master Data Management Program: Eight Key Steps in the Journey

Earley Information Science Team
Earley Information Science Team
We're passionate about enterprise data and love discussing industry knowledge, best practices, and insights. We look forward to hearing from you! Comment below to join the conversation.

Recent Posts

Designing AI Programs for Success - a 4 Part Series

Recorded - available as on demand webcast AI is plagued by inflated and unrealistic expectations due to a lack of broad understanding of this wide-ranging space by software vendors and customers. Software tools can be extremely powerful, however the services, infrastructure, data quality, architecture, talent and methodologies to fully deploy in the enterprise are frequently lacking. This four-part series by Earley Information Science and Pandata will explore a number of issues that continue to afflict AI projects and reduce the likelihood of success. The sessions will provide actionable steps using proven processes to improve AI program outcomes.

The Missing Ingredient to Digital Transformation: Scaling Knowledge Communities and Processes

The holy grail of digital transformation is the seemingly conflicting goals of high levels of customer service and pressure to reduce costs. “Digital Transformation” has become an all-encompassing term – in a piece in this column about customer data platforms, I asked whether the term has lost its meaning: The phrase “digital transformation” can mean anything and everything — tools, technology, business processes, customer experience, or artificial intelligence, and every buzzword that marketers can come up with. Definitions from analysts and vendors include IT modernization and putting services online; developing new business models; taking a “digital first” approach; and creating new business processes, and customer experiences. The overarching objective of a digital transformation program is to improve end-to-end efficiencies, remove friction from information flows, and create new value streams that differentiate a company’s offerings and strengthen the customer relationship. Having assisted large global enterprises with building the data architecture, supporting processes, and governance for multiple digital transformations, in my experience, there are two broad classes of initiatives that seem to get funding and others that miss the boat in terms of time, attention, and resources.

4 Reasons B2B Manufacturers need Strong Product Data

There are many manufacturers who have started to take the leap forward in the digital space, but there are still a great number who rely solely on their distributors to manage their product data. We are going to look at 4 key reasons why its so important that manufacturers own their product and dedicate the time and resources to build it out.