All Posts

[RECORDED] Unlock the Value of Data Discovery Using Knowledge Graphs and Hybrid AI

Successful knowledge management, risk management and process automation initiatives use Knowledge Graphs and Text Analytics for data discovery to extract value from documents and transform them into actionable insights and data.

Knowledge Graphs aka Semantic Networks are the bedrock of an organization’s Information Architecture - modeling an organization’s products, services and people. Such semantic approaches, leveraging Natural Language techniques, have been the backbone of Text Analytics. Recently, advances in Machine Learning (ML) are augmenting such traditional approaches to create Hybrid AI.

Attend the next Earley Information Science webinar to understand the key steps to set up your next data discovery initiative for success using the latest methodology and technologies. We’ve partnered with Expert.AI, a recognized leader in document-oriented text analytics platforms to explain the technical and methodological advances that enable better data discovery.

In this webinar we discuss:
  • Hybrid AI – Combining Machine Learning and Natural Language
  • Information Architecture and Knowledge Graphs
  • Real World Examples and Business Impact – Expert.ai

Speakers

  • Seth Earley
    Founder & CEO, Earley Information Science

  • Christophe Aubry, Global Head of Value Creation, Expert.aiREGISTER

Earley Information Science Team
Earley Information Science Team
We're passionate about enterprise data and love discussing industry knowledge, best practices, and insights. We look forward to hearing from you! Comment below to join the conversation.

Recent Posts

[Earley AI Podcast] Episode 26: Daniel Faggella

Human Cognitive Science Guest: Daniel Faggella

[RECORDED] Master Data Management & Personalization: Building the Data Infrastructure to Support Orchestration

The Increasing Criticality of MDM for Personalization for Customers and Employees Master data management seems to be one of those perennial, evergreen programs that organizations continue to struggle with. Every couple of years people say, “we're going to get a handle on our master data” and then spend hundreds of thousands to millions and tens of millions of dollars working toward a solution. The challenge is that many of these solutions are not really getting to the root cause of the problem.  They start with technology and begin by looking at specific data elements rather than looking at the business concepts that are important to the organization. MDM programs are also difficult to anchor on a specific business value proposition such as improving the top line. Many initiatives are so deep in the weeds and so far upstream that executives lose interest and they lose faith in the business value that the project promises. Meanwhile frustrated data analysts, data architects and technology organizations feel cut off at the knees because they can't get the funding, support and attention that they need to be successful. We've seen this time after time and until senior executives recognize the value and envision where the organization can go with control over its data across domains, this will continue to happen over and over again. Executives all nod their heads and say “Yes! Data is important, really important!” But when they see the price tag they say, “Whoa hold on there, it's not that important”. Well, actually, it is that important. We can't forget that under all of the systems, processes and shiny new technologies such as artificial intelligence and machine learning lies data. And that data is more important than the algorithm. If you have bad data your AI is not going to be able to fix it. Yes there are data remediation applications and there are mechanisms to harmonize or normalize certain data elements. But looking at this holistically requires human judgment: understanding business processes, understanding data flows, understanding dependencies and understanding of the entire customer experience ecosystem and the role of upstream tools, technologies and processes that enable that customer experience. Until we take that holistic approach and connect it to business value these things are not going to get the time, attention and resources that they need. In our next webinar on March 15th, we're going to take another look at helping organizations connect master data to the Holy Grail of personalized experience. This is an opportunity to bring your executives to a webinar that will show them how these dots are connected and how to achieve significant and measurable business value. We will show the connection between the data, the process that the data supports, business outcomes and the and the organizational strategy. We will show how each of the domains that need to be managed and organized to enable large scale orchestration of the customer and the employee experience. Please join us on March 15th and share with your colleagues - especially with your leadership. This is critically important to the future of the organization and getting on the right track has to begin today.

[Earley AI Podcast] Episode 25: Michelle Zhou

Data Tells the Story Guest: Michelle Zhou