All Posts

How Companies Are Benefiting from “Lite” Artificial Intelligence

This Article originally appeared in the Harvard Business Review.

Artificial intelligence is hot, but also daunting. The latest advances — known variously as cognitive computing, machine learning, and deep learning — sound complicated and expensive. And they are, despite the enormous potential they bring to the marketplace. For many companies, the price tag and the commitment of resources are too high a hurdle. And for other reasons, even a giant like Apple is facing challenges.

But the good news is that the early dividends from AI are already within reach of most midsize companies as they look for ways to expand their digital boundaries. In fact, the building blocks of AI can produce great results with fewer technical requirements and less time and money than many companies realize. What’s more, those that take this initial step are getting a leg up on AI’s future, since that step is going to be a prerequisite for everything that follows.

First, let’s get our bearings.

At the high end of artificial intelligence are systems like cognitive computing that are allowing driverless cars and other machines to develop the capacity to learn from their experiences in the world — by incorporating nuances, remembering outcomes, and adapting to mistakes. (A recent accident involving a Tesla “autonomous car” has raised questions about AI’s current limits.)

At the less-expensive end is a knowledge-based approach that organizes data and language into highly malleable and helpful blocks of information. These “AI Lite” systems don’t learn new tricks — unless their human minders use new code instructions to “teach” them. But they can become very smart indeed about sorting and distributing their information in extremely fast ways.

What follows are some guideposts to help you put AI Lite to work.

This Articles was originally published on Harvard Business Review on July 19 2016.

Find the right places to use it. Even in this new information age, not everything requires the razzle-dazzle of AI. But companies and government agencies are starting to find plenty of places where knowledge-based tools can make a huge difference. These include improving data-mining operations, helping with training, and making structured, repeatable tasks and processes far more efficient and less costly. And they are finding the tools increasingly useful, of course, in dealing with online customers.

For example, Allstate Business Insurance, a division of Allstate Insurance, used the tools to develop a virtual assistant known as ABIe (pronounced “Abby”) to answer questions from its 12,000 agents. It was a bit like hiring Apple’s Siri at a sliver of the cost. Mike Barton, the division’s president, put it this way: “We think of ABIe as our precursor to cognitive computing on a shoestring.”

When the company upgraded its commercial insurance line for small businesses a few years ago, the agents jammed internal call centers with questions about how the policies worked and how to set sales quotes. The cost of simply expanding the call centers was prohibitive.

Enter ABIe (shorthand for the Allstate Business Insurance Expert), which my firm helped develop. Employing a rigorous approach to the words and phrases at the heart of the company’s products, ABIe’s avatar-driven interface offers accurate answers to policy questions while streamlining the quote process. From just a few thousand queries a month in 2013, ABIe now handles 100,000 — from all of the company’s employees, and not just from agents. A new version of ABIe will soon be taking queries directly from the customers. Best of all, ABIe paid for itself the first year, so almost all of the ongoing savings now drop to the bottom line.

Roll up your sleeves. AI Lite is far less complicated and less expensive than the high end of the spectrum, but that doesn’t mean it is off the shelf. One size does not fit all — and there are no plug-and-play magic bullets.

In short, companies that want to get into this game will have to roll up their sleeves and do some old-fashioned blocking and tackling. But the prize is worth pursuing: If the right data is married to the right vocabulary and terminology, a company’s information capabilities will soar.

Don’t expect everything to be perfect. Given all the moving parts, however, mistakes, and the need for midcourse corrections, are inevitable, so prepare for them. In ABIe’s case, the team started out by offering some answers that were far too thorough, essentially telling the questioner how to build a clock when all that was sought was the correct time. It took trial and error — including detailed debriefs of those using ABIe — to arrive at very specific and actionable answers and to put in place the governance, metrics, and change-management processes to make controlled, methodical updates.

Don’t make your AI too lite. When using AI to interact with online customers, keep in mind that piecemeal approaches won’t work. Most organizations are deploying department-level solutions and standalone tools without sufficient funding. The results are typically inconsistent and haphazard, forcing time-consuming and costly fixes.

One department at a company, for example, may see the customer through a transactional lens, while another puts the emphasis on promotions. The differences in their data models will slow, and perhaps hobble, the entire program.

Getting your money’s worth from AI — whether at the knowledge-based end of the spectrum or later on, with more extensive, and expensive, applications — requires three things. The effort must involve careful analysis and preparation, which takes into account each department but keeps the focus on the full enterprise. It must have a formal (and nuanced) governance structure. And someone at the most senior level of the company must sponsor it.

Without those foundational elements in place, you will fall short in deploying the incremental power of AI Lite and be ill prepared for the revolutionary changes that AI promises to bring.

Seth Earley
Seth Earley
Seth Earley is the Founder & CEO of Earley Information Science and the author of the award winning book The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable. An expert with 20+ years experience in Knowledge Strategy, Data and Information Architecture, Search-based Applications and Information Findability solutions. He has worked with a diverse roster of Fortune 1000 companies helping them to achieve higher levels of operating performance.

Recent Posts

Use Customer and Behavior Data To Create Personalized Experiences

The more quickly customers can find the product they are seeking, the more likely they are to complete a transaction and to return to the site in the future. Personalizing offers and making well- targeted recommendations can bring customers and products together faster, and are effective ways to engage customers by creating a more positive customer experience. In order to do this, companies need to capture and use as much relevant information as possible. The more that is known about the customer, the more effectively the recommendation system works. Customers generate many signals through their online behavior, and those signals can also be used to understand their interests, purchasing patterns, and needs. Reading their digital body language accurately and creating a valid customer model is essential to anticipating and fulfilling those needs.

How to Instrument KPIs Throughout the Customer Journey

You're probably using metrics to determine if your marketing programs are effective. But, have you selected the right metric at each stage of the customer journey?  Which ones connect to your strategic goals? In this session Seth Earley and Allison Brown talk about how each stage of the journey can be instrumented to use feedback from course corrections to further improve the process. You'll learn: Types of operational and user experience metrics and KPI’s How to select and collect the right metric for each stage of the customer journey How KPIs can be used for data-driven decisions How to manage conflicting goals and metrics

First Party Data - Managing and Monetizing the "Data Exhaust" From Your MarTech Stack

Understanding, anticipating and responding to the wants, needs and behaviors of your customer is the competitive battlefield of 2022. However, with new limitations and regulations regarding second and third-party data and tracking cookies, marketers, digital leaders and ecommerce executives have to consider their own methods of collecting and acting upon the data they gather about customers. In this webinar Seth Earley will talk with industry experts about how you need to model, collect, normalize, organize, manage, analyze, and act on customer information. The time to do so is now and we’ll discuss practical ways to move the needle on customer data, customer analytics and orchestration of the customer experience.