Growth Series BLOG

Its a Premium BLOG template and it contains Instagram Feed, Twitter Feed, Subscription Form, Blog Search, Image CTA, Topic filter and Recent Post.

All Posts

The Problem with Big Data is Context - Information Architecture Makes the Difference

The story of the blind men and the elephant illustrates how a limited perspective can lead to erroneous conclusions.  Big Data can create the same fractured, incomplete perspective… only faster.  

Big Data Analytics has taken center stage in many companies.   Retailers and manufacturers of consumer products use advanced analytics to segment customers and predict buying behavior.  Vast amounts of digital information also provide feedback on customer experience.  Corporations in regulated industries are using Big Data to ensure compliance with a growing number of regulations.  Ensuring compliance is complex and expensive, unless you can analyze structured and unstructured content (like emails) to identify potential violations.

Here’s the trouble – Big Data engines can analyze a lot of data, but without context linking the analysis to your specific organizational vocabulary--such as product hierarchy and attributes-- the Big Data engine will have you operating as one of the blind men.  The following example illustrates the point.   

You are seeking to understand a customer complaint such as:

“Waited too long on hold. Refund was not issued. Screen resolution was poor and battery did not last on my computer.  Customer service rep did not have knowledge to answer questions.”  

You must:

  1. Parse the text
  2. Interpret which departments and products are causing the problems.  
  3. Classify the information according to process, product, supporting function and department.

That’s where the real problem starts.   A sentiment analysis engine built on Big Data cannot distinguish the names of your products and services.  It may not classify this complaint properly.  You might miss the chance to act… resolve the problem… protect your brand.

So, without an architecture, taxonomy, and domain model, the blunt tool misses the point, requires manual interaction, and slows service.  

Instead, you can improve the results of your Big Data projects by incorporating information sciences so you can,

  • Diagnose gaps in current analytics processes
  • Quickly operationalize big data initiatives
  • Align customer experience analytics with internal process metrics
  • Remove manual processing steps from big data programs
  • Reduce the cost of integrating analytics tools

Big Data Advanced Analytics is the “in-thing.”  Without information architecture and other interventions, Big Data can be overwhelming, expensive, and distracting.

We can help put data analytics to work to improve marketing and customer satisfaction and gain a crucial competitive edge. Give us a shout.



Seth Earley
Seth Earley
Seth Earley is the Founder & CEO of Earley Information Science and the author of the award winning book The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable. An expert with 20+ years experience in Knowledge Strategy, Data and Information Architecture, Search-based Applications and Information Findability solutions. He has worked with a diverse roster of Fortune 1000 companies helping them to achieve higher levels of operating performance.

Recent Posts

Designing AI Programs for Success - a 4 Part Series

Recorded - available as on demand webcast AI is plagued by inflated and unrealistic expectations due to a lack of broad understanding of this wide-ranging space by software vendors and customers. Software tools can be extremely powerful, however the services, infrastructure, data quality, architecture, talent and methodologies to fully deploy in the enterprise are frequently lacking. This four-part series by Earley Information Science and Pandata will explore a number of issues that continue to afflict AI projects and reduce the likelihood of success. The sessions will provide actionable steps using proven processes to improve AI program outcomes.

The Missing Ingredient to Digital Transformation: Scaling Knowledge Communities and Processes

The holy grail of digital transformation is the seemingly conflicting goals of high levels of customer service and pressure to reduce costs. “Digital Transformation” has become an all-encompassing term – in a piece in this column about customer data platforms, I asked whether the term has lost its meaning: The phrase “digital transformation” can mean anything and everything — tools, technology, business processes, customer experience, or artificial intelligence, and every buzzword that marketers can come up with. Definitions from analysts and vendors include IT modernization and putting services online; developing new business models; taking a “digital first” approach; and creating new business processes, and customer experiences. The overarching objective of a digital transformation program is to improve end-to-end efficiencies, remove friction from information flows, and create new value streams that differentiate a company’s offerings and strengthen the customer relationship. Having assisted large global enterprises with building the data architecture, supporting processes, and governance for multiple digital transformations, in my experience, there are two broad classes of initiatives that seem to get funding and others that miss the boat in terms of time, attention, and resources.

4 Reasons B2B Manufacturers need Strong Product Data

There are many manufacturers who have started to take the leap forward in the digital space, but there are still a great number who rely solely on their distributors to manage their product data. We are going to look at 4 key reasons why its so important that manufacturers own their product and dedicate the time and resources to build it out.